#P20132. 「NOIP2012」开车旅行

「NOIP2012」开车旅行

题目描述

小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 11NN 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 ii 的海拔高度为 HiHi,城市 ii 和城市 jj 之间的距离 di,jd_{i, j} 恰好是这两个城市海拔高度之差的绝对值,即 di,j=HiHjd_{i, j} = |H_i - H_j|

旅行过程中,小 A 和小 B 轮流开车,第一天小 A 开车,之后每天轮换一次。他们计划选择一个城市 SS 作为起点,一直向东行驶,并且最多行驶 XX 公里就结束旅行。小 A 和小 B 的驾驶风格不同,小 B 总是沿着前进方向选择一个最近的城市作为目的地,而小 A 总是沿着前进方向选择第二近的城市作为目的地(注意:本题中如果当前城市到两个城市的距离相同,则认为离海拔低的那个城市更近)。如果其中任何一人无法按照自己的原则选择目的城市,或者到达目的地会使行驶的总距离超出 XX 公里,他们就会结束旅行。

在启程之前,小 A 想知道两个问题:

  1. 对于一个给定的 X=X0X = X_0,从哪一个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值最小(如果小 B 的行驶路程为 00,此时的比值可视为无穷大,且两个无穷大视为相等)。如果从多个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值都最小,则输出海拔最高的那个城市。
  2. 对任意给定的 X=XiX = X_i 和出发城市 SiS_i,小 A 开车行驶的路程总数以及小 B 行驶的路程总数。

输入格式

第一行包含一个整数 NN,表示城市的数目。

第二行有 NN 个整数,每两个整数之间用一个空格隔开,依次表示城市 11 到城市 NN 的海拔高度,即 H1,H2,,HnH_1, H_2, \dots, H_n,且每个 HiH_i 都是不同的。

第三行包含一个整数 X0X_0

第四行为一个整数 MM,表示给定 MMSiS_iXiX_i

接下来的 MM 行,每行包含 22 个整数 SiS_iXiX_i,表示从城市 SiS_i 出发,最多行驶 XiX_i 公里。

输出格式

第一行包含一个整数 S0S_0,表示对于给定的 X0X_0,从编号为 S0S_0 的城市出发,小 AA 开车行驶的路程总数与小 B 行驶的路程总数的比值最小。

接下来的 MM 行,每行包含 22 个整数,之间用一个空格隔开,依次表示在给定的 SiS_iXiX_i 下小 A 行驶的里程总数和小 B 行驶的里程总数。

样例 1

4
2 3 1 4
3
4
1 3
2 3
3 3
4 3
1
1 1
2 0
0 0
0 0

各个城市的海拔高度以及两个城市间的距离如上图所示。

  • 如果从城市 1 出发,可以到达的城市为 2,3,4,这几个城市与城市 1 的距离分别为 1,1,2,但是由于城市 3 的海拔高度低于城市 2,所以我们认为城市 3 离城市 1 最近,城市 2 离城市 1 第二近,所以小 A 会走到城市 2。到达城市 2 后,前面可以到达的城市为 3,4,这两个城市与城市 2 的距离分别为 2,1,所以城市 4 离城市 2 最近,因此小 B 会走到城市 4。到达城市 4 后,前面已没有可到达的城市,所以旅行结束。
  • 如果从城市 2 出发,可以到达的城市为 3,4,这两个城市与城市 2 的距离分别为 2,1,由于城市 3 离城市 2 第二近,所以小 A 会走到城市 3。到达城市 3 后,前面尚未旅行的城市为 4,所以城市 4 离城市 3 最近,但是如果要到达城市 4,则总路程为 2+3=5>32+3=5>3,所以小 B 会直接在城市 3 结束旅行。
  • 如果从城市 3 出发,可以到达的城市为 4,由于没有离城市 3 第二近的城市,因此旅行还未开始就结束了。
  • 如果从城市 4 出发,没有可以到达的城市,因此旅行还未开始就结束了。
10
4 5 6 1 2 3 7 8 9 10
7
10
1 7
2 7
3 7
4 7
5 7
6 7
7 7
8 7
9 7
10 7
2
3 2
2 4
2 1
2 4
5 1
5 1
2 1
2 0
0 0
0 0

X=7X = 7 时,

  • 如果从城市 1 出发,则路线为 1 → 2 → 3 → 8 → 9,小 A 走的距离为 1+2=31+2=3,小 B 走的距离为 1+1=21+1=2。(在城市 1 时,距离小 A 最近的城市是 2 和 6,但是城市 2 的海拔更高,视为与城市 1 第二近的城市,所以小 A 最终选择城市 2;走到 9 后,小 A 只有城市 10 可以走,没有第 2 选择可以选,所以没法做出选择,结束旅行)
  • 如果从城市 2 出发,则路线为 2 → 6 → 7,小 A 和小 B 走的距离分别为 2,4。
  • 如果从城市 3 出发,则路线为 3 → 8 → 9,小 A 和小 B 走的距离分别为 2,1。
  • 如果从城市 4 出发,则路线为 4 → 6 → 7,小 A 和小 B 走的距离分别为 2,4。
  • 如果从城市 5 出发,则路线为 5 → 7 → 8,小 A 和小 B 走的距离分别为 5,1。
  • 如果从城市 6 出发,则路线为 6 → 8 → 9,小 A 和小 B 走的距离分别为 5,1。
  • 如果从城市 7 出发,则路线为 7 → 9 → 10,小 A 和小 B 走的距离分别为 2,1。
  • 如果从城市 8 出发,则路线为 8 → 10,小 A 和小 B 走的距离分别为 2,0。
  • 如果从城市 9 出发,则路线为 9,小 A 和小 B 走的距离分别为 0,0(旅行一开始就结束了)。
  • 如果从城市 10 出发,则路线为 10,小 A 和小 B 走的距离分别为 0,0。

从城市 2 或者城市 4 出发小 A 行驶的路程总数与小 B 行驶的路程总数的比值都最小,但是城市 2 的海拔更高,所以输出第一行为 2。

数据范围与提示

对于 30% 的数据,有 1N201 \leq N \leq 201M201 \leq M \leq 20

对于 40% 的数据,有 1N1001 \leq N \leq 1001M1001 \leq M \leq 100

对于 50% 的数据,有 1N1001 \leq N \leq 1001M10001 \leq M \leq 1\,000

对于 70% 的数据,有 1N10001 \leq N \leq 1\,0001M100001 \leq M \leq 10\,000

对于 100% 的数据,有 1N1000001 \leq N \leq 100\,0001M100001 \leq M \leq 10\,000Hi109|H_i| \leq 10^90Xi109i00 \leq X_i \leq 10^9\,\,\forall i \geq 01SiNi11 \leq S_i \leq N\,\,\forall i \geq 1,数据保证 HiH_i 各不相同。